From 1 - 4 / 4
  • The site of EFELE (Effluents d’Elevage et Environnement) is part of the french network labeled as SOERE PRO. The objectives of EFELE are the same as QualiAgro and Colmar sites : the aim of the project is to characterize the long term effects of organic products applications on soil properties and to quantify their effects on water and air quality. The experimental site was initiated in 2012 and is located in Brittany, at Le Rheu. The soil is a loamy soil (neoluvisol à luvisol/redoxisol). The field is managed with a maize/ wheat crop rotation, and white mustard is sown after the wheat to cover the soil during the intercropping period. Two trials are studied at EFELE site : - A first trial named « PROs » is structured as a complete randomized block design with 4 replicates. The effects of 5 typical animal wastes are compared to control treatments : i) cattle farmyard manure and composted pig manure are applied every 2 years before maize sowing, and ii) layers manure, pig slurry and a digestate obtained after pig slurry digestion are applied in spring, on wheat vegetation at early spring or just before maize sowing. The rates of application range from 50 t ha-1 for cattle manure, 25 t ha-1 for composted pig manure, 20-25 t ha-1 for the slurry and the digestate and 3 t ha-1 for layers manure, - A second trial named « TS/MO » is structured as a band trial with 3 replicates. The objectives of this trial are to study the effects of cattle farmyard manure on soil properties under conventional tillage and reduced tillage. The meteorological data are monitored on the site, and 7 experimental plots are equipped with TDR probes (TRASE system), tensiometers (UMS T4e) and temperature probes placed at the depth of 13, 40, 60, 80 and 110 cm. Data are collected at a hourly time step. 10 plots are also equipped with wick lysimeters (0.25 x 0.50 m) placed at the depth of 40 and 90 cm. The monitoring of N2O and CO2 emission is done by a set of 6 automatics chambers. The soil surface layer (0-25 cm) is sampled every year before the animal wastes application, to characterize the evolution of the physical, biological and chemical properties. Soil, plant and animal wastes samples are kept in collection.

  • The Itatinga site is a long-term experimentation (started in 2008) that focus mainly on eucalyptus plantations. Our specific objectives are: - To understand the biogeochemical functioning of these fast-growing Eucalyptus plantations, and in particular the coupling between water, carbon, and nutrients cycles; - To use this information to develop eco-physiological models simulating the growth and balance of water, carbon and mineral elements of plantations; - To spatialize models from ground maps, satellite images and meteorological data; - To evaluate the environmental impacts and sustainability of plantations (impacts on water resources, soil fertility, regional climate. The experiment is located in Brazil, in the state of Sao Paulo. It is located at an average altitude of 800 m. Longitude / latitude 48°43'40.60''W / 22°58'4.50 ''S with an average annual temperature of 19.6 ° C and rainfall of the order of 1350 mm/year. The soil of the experiment is a ferralsol made of 72% sand, 15% clay, 3% silt. The site equipment includes a flux tower in a clonal Eucalyptus plantation, where nutrient cycles are also monitored. It also includes clonal tests, experimental plots that aim to study the effects of partial exclusion of rainfall and potassium fertilization on the cycles of mineral elements, carbon and water, and finally experimental plots comparing the ecophysiological / biogeochemical functioning of monospecific and plurispecific plantations. This study of the impact of tree diversity on the functioning of forest ecosystems is conducted on high-growing exotic species (mixture of Eucalyptus grandis and Acacia mangium) and on native species of Mata Atlântica (biome in which is located the Itatinga site). themes : Biogeochemistry of forest plantations, Ecological intensification of tropical forest plantations.

  • The Estrées-Mons platform is dedicated to arable crops. It evaluates the effect of agricultural practices on C and N cycles in the soil-plant system and their interaction. Nitrate leaching, SOM evolution and GHG emissions (CO2, N2O) are monitored according to level of N intensification, crop residues export, soil tillage and legume frequency. The key issue is to understand how the wide variation in C and N inputs affects C and N cycles in more or less intensified systems.

  • The Lusignan platform is dedicated to temporary grassland. It has been designed to increase our understanding of the effects of management of mixed arable crops / grasslands systems on the environmental outputs. The main scientific issue concerns the effects of grassland duration and management on SOM dynamics (quantity and composition), GHG emissions (CO2, N2O), nutrient lixiviation and functional biodiversity.