net ecosystem H2O flux
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
Scale
-
Aims and Philosophy of the CoffeeFlux Collaborative Platform The aim of Coffee-Flux is to assess carbon, nutrients, water and sediment Ecosystem Services (ES) at the scale of a coffee agroforestry watershed and additional experiments. Observation, experimentation, modelling and remote-sensing are combined, collecting data and calibrating models locally, then upscaling to larger regions. The project has been running continuously since 2009, in order to encompass seasonal and inter-annual fluctuations of coffee productivity and ecosystem services. Coffee-flux is a platform where collaborative research on coffee agroforestry is promoted: data are being shared between collaborators and positive interactions are enhanced. The philosophy is to concentrate several investigations on one specific site and for several years, to share a useful common experimental database, to develop modelling and to publish results in highly-ranked scientific journals. Applied research is also highly encouraged (e.g. C-Neutral certification, NAMA, Agronomy, etc.). Coffee-Flux benefits from infrastructure, easy access from CATIE and very good security, ready to welcome complementary scientific investigations and collaborations. The project is wide open to complementary projects, scientists and of course to students. The core data base is for sharing.
-
The site comprises three distincts experimental set-ups: (1) a long-term (>10 years) partial throughfall exclusion experiment replicated three times and crossed with a thinning (-30% basal area) experiment aimed at simulating long-term precipitation decrease in accordance with climate change scenario for the Mediterranean area (-30% of precipitation), (2) a total rainfall exclusion experiment using a mobile roof has been set up to simulate extreme drought events and modify precipitation seasonality, and (3) an eddy-covariance flux tower running continuously since 2001 to measure seasonal variations in ecosystem functioning and year-to-year flux responses to drought and climate.
-
The ambition of the XYLOSYLVE platform is twofold, to constitute a visible forest research facility for setting up innovative forestry practices and to build a scientific infrastructure of national and international interest for terrestrial ecology. XYLOSYLVE is an ensemble of three long-term complementary field experiments and laboratory facilities associated with. Each experiment is spatially distinct from the other but all are co-located in the INRA Hermitage area close from Bordeaux city. The experiments are designed to testing forest management alternatives dedicated to biomass and wood production in Atlantic conditions as follows: 1) Three large plots (8ha) are manipulated according to three management alternatives (Pine-Eucalypt mixture, pure enhanced Pine variety and environment-friendly Pine standard) and equipped with automated instrumentations for monitoring biogeochemistry in the different compartments of ecosystems (soil, soil solution, vegetation, atmosphere). The equipment and protocols implemented are installed in collaboration with the ICOS project according to common quality assurance standards (ICOS site Class 3). These 3 plots are not replicated here. 2) A fully randomised 4-blocks experiment includes the same three treatments than above and 5 additional treatments including various levels of species mixture, fertilisation, soil preparation and legumes introduction. The 32 plots are further split according to no till - deep tillage to a total of 64 subplots each covering 0.12 ha to a total of approximately 40ha. 3) The third experiment includes 2 levels of fertilisation (control - full annual NPK inputs), 2 levels of irrigation (control (rainfall) - daily irrigation at PET) and 2 species (local Pine species - Eucalypt hybrid) replicated in four blocks and covering an area of 8 ha (plot unit ~0.25ha). XYlosylve serve as a long term research and experimental site for temperate planted forest systems in close connection with a regional network of forest experimental sites where feasibility of new forest management alternatives is evaluated. The interest of XYLOSYLVE is double: - Allow the long term monitoring of the functioning of biophysics and biogeochemistry of new forest ecosystems with high production potential. Offer to the scientific community and to the forest-based industry a common platform to gather scientific data and wood samples and test ecosystems to better understand their dynamics and their environmental impacts; - Assess durability and environmental performance of various management options for dendro-biomass production systems (symbiotic nitrogen fixation, phosphorus uptake, long term fertility, water and energy use efficiency, evaluation of vulnerability to biotic risks /insects, pathogens/ and abiotic risks/wind, drought/ …).
-
The Barbeau research facility is located in a 33-ha forest located nearby the Fontainebleau forest. Barbeau is a mature sessile Oak stand with a Hornbeam understory. Since 2005, a monitoring facility has continuously been measuring : - the exchanges of carbon and water vapour between the forest ecosystem and the atmosphere (through the eddy covariance (EC) methodology, installed at the top of a 35-m “flux” tower, and through organ-scale photosynthesis and respiration set-ups; 30-min time step) - the atmosphere and forest microclimates (above and within the canopy, including incoming, absorbed and reflected radiations in several spectral bands, temperatures, humidity; 30-min time step) - key variables for understanding forest functioning (e.g. tree diameter / biomass growth and soil water content on a hourly to weekly basis, tree organs nutrient contents on a seasonal basis, leaf area index on an annual basis etc.) The instruments are co-located in a 2500-m² fenced area. However, the monitored “footprints” of sole instruments ranges from a few cm3soil (e.g. measurements of soil temperature) up to hectares (e.g. integrated measurements of co2 and h2o exchanges with the EC method). Beside this ensemble of continuously monitored variables, spatial surveys of the stand characteristics (e.g. tree growth, soil properties and C/N contents, soil respiration, leaf area) and large-scale experiments (e.g. 13C-enriched CO2 labelling) are regularly conducted in Barbeau.
-
Long term study of mixed forest of Pinus halepensis and Quercus ilex 55. Currently focused on carbon and water cycles, with routine measurements at the soil, plant, and ecosystem levels. Ecosystem manipulation consists in rainfall reduction and irrigation. Site is composed of : - a main enclosed area of 80x80 m ; - a 16 m tower supporting weather and eddy covariance measurements (ICOS level 2) - four 25x25 m plots (two inside and two outside the enclosed area) for 30% rainfall exclusion (with gutters), irrigation, control, and control with reversed gutters. In all plots, measurements are carried out for soil moisture, sap flow, stem diameter growth, leaf area index, litterfall, leaf water potential, and soil respiration.
-
The site of Montiers, localized at the boundaries between Meuse and Haute-Marne departments, North-East of France, has a large surface area (143 ha). It comprises two soil successions (toposequence) and the climate, stand conditions (age, species, forest management) are equivalent on all the surface of the site. The facility comprises three biogeochemical stations of 10 000 m2 each and one flux tower above forest canopy (45 m-high) settled along a soil succession representative of soils of the region. The three stations include four substations of which three are strongly equipped and one is free for future experimentations. Each equipped substation comprises lysimeters at different soil depths (litter, -10 cm, -30 cm, -60 cm and -90 cm; 3 replicates in general), tensio-lysimeters (-10 cm, -30 cm, -60 cm, -90 cm and -120 cm; 3 replicates in general) and temperature and moisture probes at different soil depths (-10 cm, -30 cm, -60 cm and -90 cm; 4 replicates), litterbags (6 replicates), stemflows (6 replicates), gutters (4 replicates). These stations allow to follow-up on the long term the flows of water, and major (Ca, Mg, K, Na, P, Fe, Mn, Si, Al, S, C, N) and trace (Cl, Se, B, I, Cs) elements between the different compartments (soil, tree, atmosphere) of a beech forest. Each station is settled on a different soil type, i.e., alocrisol, calci-brunisol, rendosol thus allowing to assess the impact of the soil type on biogeochemical cycles and on tree growth. The flux tower is equipped with a Eddy Covariance system (CO2, H2O, and sensible heat) and a complete set of sensors recording the aerial and edaphic meterological conditions, the phenology and the canopy status. The data from flux tower are available on demand. The forest mainly consists in a beech timber of about 50 years: dominant species and forestry in the region. The effect of the soil on the biogeochemical and biological functioning of this beech forest is dealt with a very integrated approach (ecophysiology, microbiology, soil science and biogeochemistry). In addition, the flux tower permits to measure, at various levels of the canopy and above, meteorological parameters (temperature, radiation, and precipitation), the gaseous exchanges and the particular deposits.