microbial diversity
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
Scale
-
This technical platform has been set up to allow ecologists to perform large-scale analysis of environmental DNA via a metabarcoding approach. DNA metabarcoding refers to high throughput DNA-based identification of multiple species from environmental DNA. The main applications consist in diet analysis from feces, in biodiversity assessment using soil or water samples, and in palaeo-environment reconstruction using lake sediments and permafrost samples. The eDNA platform is composed of three pre-PCR extraction rooms dedicated to feces, soil, and ancient DNA, and to several post-PCR rooms dedicated to the purification and the titration of PCR products. The next generation sequencing on Illumina platforms (HiSeq or MiSeq) is outsourced. The eDNA platform also possesses all the equipment that can be transported and installed in the field to allow DNA extraction straight after the sampling. The eDNA platform can provide support to: (I) Design the experiment according to the scientfic goal, and ensure data quality given the technical contraints (ii) perform large-scale DNA extractions (iii) perform large-scale DNA amplifications (iv) outsource DNA sequencing to a company having developped protocols ensuring high quality amplicon sequencing from eDNA samples (v) analyze raw sequences to produce a contengency table that will be analyzed later on by the prosecutor (vi) help discussing the scientific results with regards to the possible pitfalls of the metabarcoding approach
-
The SOERE-ACBB is a set of three platforms involving long-term (> 20 yrs) field experiments initiated in 2005-2009. Long-term studies are carried out on biogeochemical cycles and functional biodiversity (flora and fauna) in agroecosystems as affected by land use, management practices and climate change. The SOERE-ACBB covers three land use and climatic regions in France: temporary grassland, permanent grassland and arable land. The main hypothesis tested is that the evolution of the systems in response to anthropogenic disturbances and land use management is strongly linked to the dynamics of quantitative and qualitative composition of soil organic matter (SOM) and vegetation diversity. SOERE-ACBB is unique in enabling analysis of feedback loops between management practices, biogeochemical cycles and biodiversity by offering opportunities for simultaneous study of interactions between SOM dynamics, microbial communities and vegetation under various management practices of agroecosystems. The platforms are designed to characterize the trajectories of key variables of the systems throughout time as changes occur – elements such as carbon, phosphorus, potassium and nitrogen and the diversity of plants and organisms in the soil – over years or decades. The platform’s instrumentation continuously quantifies a broad range of physical, chemical and biological variables: climate forcing variables, physical conditions in soil, water fluxes and quality, carbon and nitrogen storage in soil, greenhouse gas emissions (GHG), floral, faunal and microbial diversity. The ability to monitor quantitative and qualitative changes in SOM over time will allow scientists to relate the overall evolution to energy balance and resource elements. Although SOERE-ACBB is a national infrastructure, scientists from other countries are welcome and can benefit from the acquired experience and knowledge. SOERE-ACBB has been involved in many international projects such as the Global Research Alliance and the International soil warming experiment network and is still a partner in a number of ongoing projects such as ExpeER, AnimalChange, Ecofinders and Multisward.
-
The Itatinga site is a long-term experimentation (started in 2008) that focus mainly on eucalyptus plantations. Our specific objectives are: - To understand the biogeochemical functioning of these fast-growing Eucalyptus plantations, and in particular the coupling between water, carbon, and nutrients cycles; - To use this information to develop eco-physiological models simulating the growth and balance of water, carbon and mineral elements of plantations; - To spatialize models from ground maps, satellite images and meteorological data; - To evaluate the environmental impacts and sustainability of plantations (impacts on water resources, soil fertility, regional climate. The experiment is located in Brazil, in the state of Sao Paulo. It is located at an average altitude of 800 m. Longitude / latitude 48°43'40.60''W / 22°58'4.50 ''S with an average annual temperature of 19.6 ° C and rainfall of the order of 1350 mm/year. The soil of the experiment is a ferralsol made of 72% sand, 15% clay, 3% silt. The site equipment includes a flux tower in a clonal Eucalyptus plantation, where nutrient cycles are also monitored. It also includes clonal tests, experimental plots that aim to study the effects of partial exclusion of rainfall and potassium fertilization on the cycles of mineral elements, carbon and water, and finally experimental plots comparing the ecophysiological / biogeochemical functioning of monospecific and plurispecific plantations. This study of the impact of tree diversity on the functioning of forest ecosystems is conducted on high-growing exotic species (mixture of Eucalyptus grandis and Acacia mangium) and on native species of Mata Atlântica (biome in which is located the Itatinga site). themes : Biogeochemistry of forest plantations, Ecological intensification of tropical forest plantations.
-
The Lusignan platform is dedicated to temporary grassland. It has been designed to increase our understanding of the effects of management of mixed arable crops / grasslands systems on the environmental outputs. The main scientific issue concerns the effects of grassland duration and management on SOM dynamics (quantity and composition), GHG emissions (CO2, N2O), nutrient lixiviation and functional biodiversity.
-
The Estrées-Mons platform is dedicated to arable crops. It evaluates the effect of agricultural practices on C and N cycles in the soil-plant system and their interaction. Nitrate leaching, SOM evolution and GHG emissions (CO2, N2O) are monitored according to level of N intensification, crop residues export, soil tillage and legume frequency. The key issue is to understand how the wide variation in C and N inputs affects C and N cycles in more or less intensified systems.