From 1 - 9 / 9
  • Air Temperature at 10 m Above The Surface Of The Earth (deg C)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Air Temperature at 10 m Above The Surface Of The Earth (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data.Created: November 27, 2007See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at the Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format. Source: U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE)

  • Atmospheric Pressure (kPa)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Atmospheric Pressure (kPa)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data.Created: May 13, 2008See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at the Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format. Units:kilopascal (kPa). Source: U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE)

  • Relative Humidity at 10 m Above The Surface Of The Earth (%)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Relative Humidity at 10 m Above The Surface Of The Earth (%)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data.Created: December 10, 2007See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format. Source: U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE)

  • Earth Skin Temperature (° C) NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Earth Skin Temperature (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data.Created: November 27, 2007See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format. Source: U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE)

  • Cooling Degree Days above 10° C (degree days)The monthly accumulation of degrees when the daily mean temperature is above 10° C.NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly Average & Annual Sum (July 1983 - June 2005) Parameter: Cooling Degree Days Above 10 degrees C (degree days)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data. These data are regional averages; not point data.Created: December 10, 2007See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format. Source: U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE)

  • Heating Degree Days below 18° C (degree days)The monthly accumulation of degrees when the daily mean temperature is below 18° C.NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly Average & Annual Sum (July 1983 - June 2005)Parameter: Heating Degree Days Below 18 degrees C (degree days)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data.Created: December 10, 2007See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format. Source: U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE)

  • An experimental research infrastructure dedicated to the study of ecosystems, organisms and biodiversity in the context of environmental changes. The Ecotron is a laboratory of the Institute of Ecology and Environment (CNRS) open to national and international scientists’ consortia in the fields of ecology, population and community biology and agronomy. The Ecotron allows a precise conditioning of the environment and on line measurements of states and activities (fluxes) of organisms and ecosystems at various scales. This facility bridges the gap between the complexity of in natura studies and the simplicity of laboratory experiments. The research topics to be addressed in the Ecotron include fundamental questions about biogeochemical cycles and the role of biodiversity in ecosystem processes, but tests of ecological theories as well as the applied aspects of optimizing ecosystem services are also desirable projects. http://www.ecotron.cnrs.fr/index.php/en/

  • Together with the Ecotron de Montpellier, the Ecotron IleDeFrance is part of the distributed “Infrastructure de Recherche” (IR) managed and supported by CNRS and Ecole normale supérieure since 2010. Ecotrons enable highly controlled manipulation and measurement of terrestrial and aquatic organisms, communities and ecosystems with unprecedented power and quality. On a technological side, an Ecotron is defined as a device allowing the precise conditioning of the environment and the detailed monitoring of states and activities of organisms and ecosystems. Ecotrons allow studying a range of small to medium sized biological systems from relatively complex ecosystems (e.g., intact samples of grasslands) to model plant and animal species up to reconstructed ecosystems (e.g., artificial life support models). Ecotrons can thus be used to confine ecosystems from in natura sites and therefore conduct detailed, controlled experiments on natural ecosystems. The Ecotron IleDeFrance is based on technologies implemented in the Ecolab equipment and developed primarily in collaboration with the French private company Cesbron. The Ecolab is a modular structure coupling together three environmental chambers and one laboratory room. Each environmental chamber can be independently controlled accurately for realistic climate and atmospheric conditions (temperature, humidity, CO2 and O2 content, lighting) with unprecedented power and accuracy. A stainless steel lysimeter with temperature-control on three independent levels makes it possible to incubate both terrestrial and aquatic systems and simulate thermal gradients. Artificial light can be provided with several technologies to adapt to the needs and constraints of each project. The Ecotron IleDeFrance combines several Ecolabs into a network making it possible to run powerful, replicated experiments.

  • AnaEE France has brought together in an integrated network a unique collection of experimental platforms in controlled, semi-natural or natural environments, analysis platforms and shared instruments as well as modeling platforms and Database Information Systems, all devoted to the biology of continental ecosystems. The infrastructure is built around three main service offerings that provide access to a range of experimental facilities: the Très Grande Infrastructure de Recherche des Écotrons - Écotrons Very Large Research Infrastructure, four experimental platforms in semi-natural environments, and some 20 natural sites in metropolitan France and French Guiana where long-term experiments are conducted in forests, pastures, lakes and crops. In the field of environmental microbiology, AnaEE France is also investing in the shared instruments and analytical resources required for a detailed characterization of the environment and microorganisms. In a single integrated network it provides all the tools required to study, understand and model biological systems and conduct innovative biological research on gene - environment interactions, biodiversity and the functioning of ecosystems.