From 1 - 4 / 4
  • The SOERE-ACBB is a set of three platforms involving long-term (> 20 yrs) field experiments initiated in 2005-2009. Long-term studies are carried out on biogeochemical cycles and functional biodiversity (flora and fauna) in agroecosystems as affected by land use, management practices and climate change. The SOERE-ACBB covers three land use and climatic regions in France: temporary grassland, permanent grassland and arable land. The main hypothesis tested is that the evolution of the systems in response to anthropogenic disturbances and land use management is strongly linked to the dynamics of quantitative and qualitative composition of soil organic matter (SOM) and vegetation diversity. SOERE-ACBB is unique in enabling analysis of feedback loops between management practices, biogeochemical cycles and biodiversity by offering opportunities for simultaneous study of interactions between SOM dynamics, microbial communities and vegetation under various management practices of agroecosystems. The platforms are designed to characterize the trajectories of key variables of the systems throughout time as changes occur – elements such as carbon, phosphorus, potassium and nitrogen and the diversity of plants and organisms in the soil – over years or decades. The platform’s instrumentation continuously quantifies a broad range of physical, chemical and biological variables: climate forcing variables, physical conditions in soil, water fluxes and quality, carbon and nitrogen storage in soil, greenhouse gas emissions (GHG), floral, faunal and microbial diversity. The ability to monitor quantitative and qualitative changes in SOM over time will allow scientists to relate the overall evolution to energy balance and resource elements. Although SOERE-ACBB is a national infrastructure, scientists from other countries are welcome and can benefit from the acquired experience and knowledge. SOERE-ACBB has been involved in many international projects such as the Global Research Alliance and the International soil warming experiment network and is still a partner in a number of ongoing projects such as ExpeER, AnimalChange, Ecofinders and Multisward.

  • Aims and Philosophy of the CoffeeFlux Collaborative Platform The aim of Coffee-Flux is to assess carbon, nutrients, water and sediment Ecosystem Services (ES) at the scale of a coffee agroforestry watershed and additional experiments. Observation, experimentation, modelling and remote-sensing are combined, collecting data and calibrating models locally, then upscaling to larger regions. The project has been running continuously since 2009, in order to encompass seasonal and inter-annual fluctuations of coffee productivity and ecosystem services. Coffee-flux is a platform where collaborative research on coffee agroforestry is promoted: data are being shared between collaborators and positive interactions are enhanced. The philosophy is to concentrate several investigations on one specific site and for several years, to share a useful common experimental database, to develop modelling and to publish results in highly-ranked scientific journals. Applied research is also highly encouraged (e.g. C-Neutral certification, NAMA, Agronomy, etc.). Coffee-Flux benefits from infrastructure, easy access from CATIE and very good security, ready to welcome complementary scientific investigations and collaborations. The project is wide open to complementary projects, scientists and of course to students. The core data base is for sharing.

  • The Lusignan platform is dedicated to temporary grassland. It has been designed to increase our understanding of the effects of management of mixed arable crops / grasslands systems on the environmental outputs. The main scientific issue concerns the effects of grassland duration and management on SOM dynamics (quantity and composition), GHG emissions (CO2, N2O), nutrient lixiviation and functional biodiversity.

  • The Estrées-Mons platform is dedicated to arable crops. It evaluates the effect of agricultural practices on C and N cycles in the soil-plant system and their interaction. Nitrate leaching, SOM evolution and GHG emissions (CO2, N2O) are monitored according to level of N intensification, crop residues export, soil tillage and legume frequency. The key issue is to understand how the wide variation in C and N inputs affects C and N cycles in more or less intensified systems.