Keyword

GARAH

64 record(s)
 
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Representation types
Resolution
From 1 - 10 / 64
  • Base of hydrate stability zone for 96% CO2. Geographical site: Celtic Sea & French EEZ. References: Burnol, A. (2018). Roles of Gas Hydrates for CO2 Geological Storage Purposes. Gas Hydrates 2, 267-284. doi:https://doi.org/10.1002/9781119451174.ch13 Burnol, A., Thinon, I., Ruffine, L., & Herri, J. M. (2015). Influence of impurities (nitrogen and methane) on the CO2 storage capacity as sediment-hosted gas hydrates – Application in the area of the Celtic Sea and the Bay of Biscay. International Journal of Greenhouse Gas Control, 35, 96-109. doi:https://doi.org/10.1016/j.ijggc.2015.01.018

  • Base of hydrate stability zone for 100% CO2. Geographical site: Celtic Sea & French EEZ. References: Burnol, A. (2018). Roles of Gas Hydrates for CO2 Geological Storage Purposes. Gas Hydrates 2, 267-284. doi:https://doi.org/10.1002/9781119451174.ch13 Burnol, A., Thinon, I., Ruffine, L., & Herri, J. M. (2015). Influence of impurities (nitrogen and methane) on the CO2 storage capacity as sediment-hosted gas hydrates – Application in the area of the Celtic Sea and the Bay of Biscay. International Journal of Greenhouse Gas Control, 35, 96-109. doi:https://doi.org/10.1016/j.ijggc.2015.01.018

  • Calculated vitrinite reflectance (EASY%Ro) at the Top Lower Jurassic

  • Base of hydrate stability zone for biogenic gas. Geographical site: world. Reference: Piñero, E., Marquardt, M., Hensen, C., Haeckel, M., & Wallmann, K. (2013). Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences (BG), 10(2), 959-975.

  • Density map of hydrate evidence (samples of hydrates in gravity cores or wells) and indicators (seismic anomalies or geochemical indicators). It has been developed with the “point density” algorithm of ArcGIS®. Pixel value, number of data per 100,000 km2. Parameters: population field, none; cell size, 5000; radius, 178,415 metres; areal units, square kilometres; method, geodesic. Knowledge gap, raster value < 1 Reference: https://doi.org/10.3390/app11062865

  • Calibration well used in the 3D study. The attributes come from EMODnet.

  • Calculated vitrinite reflectance (EASY%Ro) at the Base Cretaceous Unconformity subcrop. The subcrop covers the Top Upper Jurassic, Top Lower Jurassic and Triassic

  • Reliability of the susceptibility assessment to the presence of marine hydrate deposits. It based on the density of geographical data taken into account in the susceptibility assessment. Reference: https://doi.org/10.3390/app11062865

  • Calculated average vitrinite reflectance (EASY%Ro) for the Lower Jurassic interval.

  • Base of hydrate stability zone for biogenic gas. Geographical site: SW Europe. Reference: Váquez-Izquierdo, A., Gimenez-Moreno, C.-J., León, R., 2018. Knowledge gaps in gas-hydrate assessment: theoretical considerations and practical implications. Geophysical Research Vol. 20, EGU2018-12847, 2018EGU General Assembly 2018 (Vol. 20, EGU2018-12847, 2018EGU General Assembly 2018).