GARAH
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Representation types
Resolution
-
Base of hydrate stability zone for biogenic gas. Geographical site: SW Europe. Reference: Váquez-Izquierdo, A., Gimenez-Moreno, C.-J., León, R., 2018. Knowledge gaps in gas-hydrate assessment: theoretical considerations and practical implications. Geophysical Research Vol. 20, EGU2018-12847, 2018EGU General Assembly 2018 (Vol. 20, EGU2018-12847, 2018EGU General Assembly 2018).
-
Hydrocarbon fields in the North Sea. This dataset contains information about the types of hydrocarbon, status, start year and operator.
-
Base of negative bouyancy zone for 100% C02. Geographical site: Celtic Sea & French EEZ. References: Burnol, A. (2018). Roles of Gas Hydrates for CO2 Geological Storage Purposes. Gas Hydrates 2, 267-284. doi:https://doi.org/10.1002/9781119451174.ch13 Burnol, A., Thinon, I., Ruffine, L., & Herri, J. M. (2015). Influence of impurities (nitrogen and methane) on the CO2 storage capacity as sediment-hosted gas hydrates – Application in the area of the Celtic Sea and the Bay of Biscay. International Journal of Greenhouse Gas Control, 35, 96-109. doi:https://doi.org/10.1016/j.ijggc.2015.01.018
-
Gas analyses produced by IODP The International Ocean Discovery Program
-
Eastern Structural elements from NAG-TEC: Northeast Atlantic Geoscience Tectonostratigraphic Atlas. This dataset contains the basins and highs along the margins and within the Jan Mayen microcontinent and contains information about the ages, the hierarchy between the structural elements and origin of data. For further information see https://data.geus.dk/nagtec/home.
-
Two profiles are shown. The first is an ordinary cross section through the the 3D model. The second (along the same line) shows the amount of petroleum generated in the shales selected for this study. Further information is found in the report,GARAH WP2: 3D Pilot Study – Unconventionals, https://repository.europe-geology.eu/egdidocs/garah/garah_deliverable_report_d24_3d_petroleum_model_un.pdf
-
Calculated vitrinite reflectance (EASY%Ro) at the Top Lower Jurassic
-
Base of negative bouyancy zone for 96% C02. Geographical site: Celtic Sea & French EEZ. References: Burnol, A. (2018). Roles of Gas Hydrates for CO2 Geological Storage Purposes. Gas Hydrates 2, 267-284. doi:https://doi.org/10.1002/9781119451174.ch13 Burnol, A., Thinon, I., Ruffine, L., & Herri, J. M. (2015). Influence of impurities (nitrogen and methane) on the CO2 storage capacity as sediment-hosted gas hydrates – Application in the area of the Celtic Sea and the Bay of Biscay. International Journal of Greenhouse Gas Control, 35, 96-109. doi:https://doi.org/10.1016/j.ijggc.2015.01.018
-
Base of negative bouyancy zone for 96% C02. Geographical site: South of Biscay Bay, Galicia Area. References: Burnol, A. (2018). Roles of Gas Hydrates for CO2 Geological Storage Purposes. Gas Hydrates 2, 267-284. doi:https://doi.org/10.1002/9781119451174.ch13 Burnol, A., Thinon, I., Ruffine, L., & Herri, J. M. (2015). Influence of impurities (nitrogen and methane) on the CO2 storage capacity as sediment-hosted gas hydrates – Application in the area of the Celtic Sea and the Bay of Biscay. International Journal of Greenhouse Gas Control, 35, 96-109. doi:https://doi.org/10.1016/j.ijggc.2015.01.018
-
Information about the heat flow and geothermal gradient represented as points. The data originally come from the global heat flow database of the International Heat Flow Commission in 2010. A description of the data and a literature list can be found on the website of the International Heat Flow Commission (https://ihfc-iugg.org/products/global-heat-flow-database)
Metadata catalogue