denominator

250000

320 record(s)
 
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 320
  • Output of the 2016 EUSeaMap broad-scale predictive model, produced by EMODnet Seabed Habitats and aggregated into the Benthic Broad Habitat Types of the Marine Strategy Framework Directive (as defined in the Commission Decision 17 May 2017). The extent of the mapped area includes the Mediterranean Sea, Black Sea, Baltic Sea, and areas of the North Eastern Atlantic extending from the Canary Islands in the south to Norway and Iceland in the North. The map was produced using a "top-down" modelling approach using classified habitat descriptors to determine a final output habitat. Habitat descriptors differ per region but include: Biological zone Energy class Oxygen regime Salinity regime Seabed Substrate Riverine input Habitat descriptors (excepting Substrate) are calculated using underlying physical data and thresholds derived from statistical analyses or expert judgement on known conditions. The model is produced in Arc Model Builder (10.1). For more information on the modelling process please read the EMODnet Seabed Habitats Technical report (See Online Resources) The model was created using raster input layers with a cell size of 0.002dd (roughly 250 meters). The model includes the sublittoral zone only; due to the high variability of the littoral zone, a lack of detailed substrate data and the resolution of the model, it is difficult to predict littoral habitats at this scale. For details on methodology see: Populus J. And Vasquez M. (Eds), 2017. EUSeaMap, a European broad-scale seabed habitat map. Ifremer Available from: http://archimer.ifremer.fr/doc/00388/49975/

  • Profile soil analyses are available from a number of BGS programmes, notably the Mineral Reconnaissance Programme (MRP) and the Geochemical Baseline Survey of the Environment (G-BASE) programme. Sampling depth and range of analytes determined is very variable for the MRP. G-BASE samples are consistently from 35 - 50 cm though since 2003 it has become routine practice in the G-BASE project to collect a top soil and deeper profile sample from the same site but only analyses the top soil and store the profile soil. This also applies in urban areas. The G-BASE profile soils were generally sieved to 150 microns before analysis and determined by XRFS for some or all of: Mg, P, K, Ca, Ti, Mn, Fe, V, Cr, Co, Ba, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Pb, Bi, Th, U, Ag, Cd, Sn, Sb, Cs, La, Ce, Ge, Sc, Se, Br, Hf, Ta, W, Tl, Te and I. MRP samples can include profile samples from greater than 1 meter collected using a power auger and also include till samples. The G-BASE samples are collected at a density of 1 sample per two square kilometres in rural areas and 4 samples every kilometre square in urban areas. MRP sampling was more site specific generally collecting soil samples along lines at spacing intervals generally 25 - 250 m.

  • Confidence in the 2016 EUSeaMap Energy class layer, produced by EMODnet Seabed Habitats for the 2016 EUSeaMap broad-scale predictive habitat maps. Values are on a range from 1 (Low confidence) to 3 (High confidence). Detailed information on the confidence assessment in Populus J. et al 2017. EUSeaMap, a European broad-scale seabed habitat map. Ifremer. http://doi.org/10.13155/49975

  • This layer provides geographic information related to the polymetallic nodules distribution in the Azores, based on the International Seabed Authority organisation.

  • This layer of the map based index (GeoIndex) shows the locations where stream sediment samples are collected under the G-BASE (Geochemical Baseline Survey of the Environment) programme at an average density of approximately one site per 1.5 km square. Analytical data for the minus 150 micron fraction of stream sediment samples are available for some or all of the following elements by a variety of analytical methods (now predominantly XRFS): Mg, P, K, Ca, Ti, Mn, Fe, V, Cr, Co, Ba, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Pb, Bi, Th, U, Ag, Cd, Sn, Sb, Cs, La, Ce, Ge, Sc, Se, Br, Hf, Ta, W, Tl, Te and I. Stream sediment samples were also collected by the now defunct MRP programme and analytical data for the minus 150 micron fraction of samples is available for a variety of elements including Ag, As, Au, Ba, Bi, Ca, Ce, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, U, V, W, Zn and Zr. Some of the MRP samples may have undergone several stages of analysis, some for inclusion in the G-BASE project. The samples may have been assigned a different sample number but will plot at the same site. Data is available for most Great Britain, apart from some parts of Southern England which have yet to be surveyed.

  • This layer of the Map based index (GeoIndex) shows where water wells exist with data available on transmissivity, storativity and discharge/drawdown. These parameters indicate the physical characteristics of the aquifer which can relate to factors such as possible storage capacities or rate of movement of water through the rock.

  • Water samples have predominantly been collected by the G-BASE (Geochemical Baseline Survey of the Environment) project at an average sampling density of one sample per 1.5 km square. Samples have been collected from approximately 85% of Great Britain but it is only from Wales and Humber-Trent southwards that a wide range of analytes have been determined. Currently G-BASE stream water samples collected from high order streams are determined by ICP-AES for 27 elements - Sr, Cd, Ba, Si, Mn, Fe, P, S (as SO42-), B, Mg, V, Na, Mo, Al, Be, Ca, Zn, Cu, Pb, Li, Zr, Co, Ni, Y, La, K and Cr; and by quadrupole ICP-MS for 24 trace elements - Li, Be, Al, V, Cr, Co, Ni, Cu, As, Rb, Y, Zr, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Tl, Pb, Th and U. Automated colorimetric methods are used to determine Cl and NO3- and ion selective electrode is used to determine F. Waters are also analysed for non-purgeable organic carbon (NPOC) to determine dissolved organic carbon content. All samples have routinely been analysed for pH, conductivity and bicarbonate. Much of the UK coverage also includes uranium and fluoride analyses.

  • This layer of the map based index (GeoIndex) shows the locations of panned drainage sediment samples. At most drainage sampling sites a panned heavy mineral concentrate is collected from the <2mm sediment fraction using a wooden dulang pan. For the Mineral Reconnaissance Programme these pans would be routinely analysed for mineral exploration purposes. The G-BASE project collects them at every drainage site but does not routinely submit them for chemical analyses and the samples are archived. Usually they are inspected when collected with a hand lens and the presence of mineralisation or contamination is recorded in the site information on field cards. The MRP has collected heavy mineral concentrates from some 33,000 drainage sites and analysed these for a variety of elements (predominantly by XRFS) including Ag, As, Au, Ba, Bi, Ca, Ce, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, U, V, W, Zn and Zr.

  • The map sheet: 1. Peuplement et occupation de l'espace - Stages of migration and land use = Tahap penyebaran penduduk dan pemukiman daerah : Lampung (Sumatera) 1905-1985. Scale of 1:250 000. Date of publication: 1987.

  • Salinity regime class layer in the Baltic Sea and Kattegat strait in the North Sea/Baltic Sea., Produced by EMODnet Seabed Habitats as an input layer for the 2016 EUSeaMap broad-scale habitat model. The map of salinity regime classes was produced using underlying salinity data at the seabed and thresholds derived from statistical analyses or expert judgement on known conditions. Detailed information is found in the EMODnet Seabed Habitats technical report and its appendices (Populus et al, 2017, link in Resources).