2014
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
Webviewer for the Geological Survey of Ireland, including all publicly accessible databases, including the mineral localities database.
-
Eastern Structural elements from NAG-TEC: Northeast Atlantic Geoscience Tectonostratigraphic Atlas. This dataset contains the basins and highs along the margins and within the Jan Mayen microcontinent and contains information about the ages, the hierarchy between the structural elements and origin of data. For further information see https://data.geus.dk/nagtec/home.
-
The Scottish Public Sector LiDAR (Phase II) dataset was commissioned in response to the Flood Risk Management Act (2009) by the Scottish Government, Scottish Environmental Protection Agency (SEPA), sportscotland, and 13 Scottish local authorities. This extension of the Phase I dataset collected airborne LiDAR for 66 additional sites for the purposes of localised flood management. Data was collected between 29th November 2012 and 18th April 2014 totalling an area of 3,516 km2 (note the dataset does not have full national coverage). Aside from flood risk management, this data has also been used for archaeological and orienteering purposes. This dataset reflects the Digital Terrain Model (DTM) produced from the point cloud data.
-
The Scottish Public Sector LiDAR (Phase II) dataset was commissioned in response to the Flood Risk Management Act (2009) by the Scottish Government, Scottish Environmental Protection Agency (SEPA), sportscotland, and 13 Scottish local authorities. This extension of the Phase I dataset collected airborne LiDAR for 66 additional sites for the purposes of localised flood management. Data was collected between 29th November 2012 and 18th April 2014 totalling an area of 3,516 km2 (note the dataset does not have full national coverage). Aside from flood risk management, this data has also been used for archaeological and orienteering purposes. This dataset reflects the Digital Surface Model (DSM) produced from the point cloud data.
-
HelioClim3v4-MC Monthly Direct Normal Irradiation for the month of Feb. 2005 in kWh/m2. Copyright 2013 MINES ParisTech / Transvalor Direct component of the irradiation received by a plane normal to sun rays during the month of Feb. 2005 for the field-of-view of the Meteosat satellite. MINES ParisTech has developed the Heliosat-2 method that converts 15 min Meteosat images into irradiation maps and stores them into the HelioClim3 database. A monthly irradiation value is computed only if at least 25 daily irradiation values are available. The irradiation values of the missing days are computed by taking into account the mean value of the valid days and the length of each missing day. A day is valid if the HelioSat-2 method can be applied on at least one 15 min slot. Gaps in the day are filled by taking into account the available 15 min irradiation values and the length of the day. The other irradiation components (direct, diffuse) received on an horizontal, tilted or normal plane are then computed and provided via the SoDa Service (www.soda-is.com and pro.soda-is.com) since 2003. Such data are used by academics for teaching and research in solar energy, environment, climate and others, and by companies for the sitting of solar plants (PV, CST), their sizing, and the monitoring of their production. Since 2009, the French company Transvalor is in charge of the SoDa Service. Transvalor provides in addition a series of user-tailored services, such as these maps made with MINES ParisTech that combine HelioClim-3 data with an advanced model McClear that estimates the irradiation that should be received for a given site and given instant if the sky were clear, aka clear sky irradiation. Here MC stands for McClear. Transvalor and MINES ParisTech have set up the McClear Clear-Sky Irradiation service that delivers time series of clear sky global, direct, direct normal, and diffuse irradiation for any site in the world, any period of time starting in 2004 up to now, with a time step ranging from 1 min to 1 month. The McClear is an outcome of the MACC and MACC-II EU-funded projects. More Information: Heliosat-2 publication: http://hal.archives-ouvertes.fr/docs/00/36/13/64/PDF/solar_energy04_heliosat2.pdf HelioClim-3: http://www.soda-is.com/eng/helioclim/helioclim3_eng.html McClear publication: http://www.atmos-meas-tech.net/6/2403/2013/amt-6-2403-2013.pdf McClear Web service: http://www.soda-pro.com/free-web-services/radiation/mcclear MACC projects: http://www.gmes-atmosphere.eu/
-
HelioClim3v4-MC Monthly Direct Normal Irradiation for the month of Jul. 2005 in kWh/m2. Copyright 2013 MINES ParisTech / Transvalor Direct component of the irradiation received by a plane normal to sun rays during the month of Jul. 2005 for the field-of-view of the Meteosat satellite. MINES ParisTech has developed the Heliosat-2 method that converts 15 min Meteosat images into irradiation maps and stores them into the HelioClim3 database. A monthly irradiation value is computed only if at least 25 daily irradiation values are available. The irradiation values of the missing days are computed by taking into account the mean value of the valid days and the length of each missing day. A day is valid if the HelioSat-2 method can be applied on at least one 15 min slot. Gaps in the day are filled by taking into account the available 15 min irradiation values and the length of the day. The other irradiation components (direct, diffuse) received on an horizontal, tilted or normal plane are then computed and provided via the SoDa Service (www.soda-is.com and pro.soda-is.com) since 2003. Such data are used by academics for teaching and research in solar energy, environment, climate and others, and by companies for the sitting of solar plants (PV, CST), their sizing, and the monitoring of their production. Since 2009, the French company Transvalor is in charge of the SoDa Service. Transvalor provides in addition a series of user-tailored services, such as these maps made with MINES ParisTech that combine HelioClim-3 data with an advanced model McClear that estimates the irradiation that should be received for a given site and given instant if the sky were clear, aka clear sky irradiation. Here MC stands for McClear. Transvalor and MINES ParisTech have set up the McClear Clear-Sky Irradiation service that delivers time series of clear sky global, direct, direct normal, and diffuse irradiation for any site in the world, any period of time starting in 2004 up to now, with a time step ranging from 1 min to 1 month. The McClear is an outcome of the MACC and MACC-II EU-funded projects. More Information: Heliosat-2 publication: http://hal.archives-ouvertes.fr/docs/00/36/13/64/PDF/solar_energy04_heliosat2.pdf HelioClim-3: http://www.soda-is.com/eng/helioclim/helioclim3_eng.html McClear publication: http://www.atmos-meas-tech.net/6/2403/2013/amt-6-2403-2013.pdf McClear Web service: http://www.soda-pro.com/free-web-services/radiation/mcclear MACC projects: http://www.gmes-atmosphere.eu/
-
HelioClim3v4-MC Monthly Direct Normal Irradiation for the month of Mar. 2005 in kWh/m2. Copyright 2013 MINES ParisTech / Transvalor Direct component of the irradiation received by a plane normal to sun rays during the month of Mar. 2005 for the field-of-view of the Meteosat satellite. MINES ParisTech has developed the Heliosat-2 method that converts 15 min Meteosat images into irradiation maps and stores them into the HelioClim3 database. A monthly irradiation value is computed only if at least 25 daily irradiation values are available. The irradiation values of the missing days are computed by taking into account the mean value of the valid days and the length of each missing day. A day is valid if the HelioSat-2 method can be applied on at least one 15 min slot. Gaps in the day are filled by taking into account the available 15 min irradiation values and the length of the day. The other irradiation components (direct, diffuse) received on an horizontal, tilted or normal plane are then computed and provided via the SoDa Service (www.soda-is.com and pro.soda-is.com) since 2003. Such data are used by academics for teaching and research in solar energy, environment, climate and others, and by companies for the sitting of solar plants (PV, CST), their sizing, and the monitoring of their production. Since 2009, the French company Transvalor is in charge of the SoDa Service. Transvalor provides in addition a series of user-tailored services, such as these maps made with MINES ParisTech that combine HelioClim-3 data with an advanced model McClear that estimates the irradiation that should be received for a given site and given instant if the sky were clear, aka clear sky irradiation. Here MC stands for McClear. Transvalor and MINES ParisTech have set up the McClear Clear-Sky Irradiation service that delivers time series of clear sky global, direct, direct normal, and diffuse irradiation for any site in the world, any period of time starting in 2004 up to now, with a time step ranging from 1 min to 1 month. The McClear is an outcome of the MACC and MACC-II EU-funded projects. More Information: Heliosat-2 publication: http://hal.archives-ouvertes.fr/docs/00/36/13/64/PDF/solar_energy04_heliosat2.pdf HelioClim-3: http://www.soda-is.com/eng/helioclim/helioclim3_eng.html McClear publication: http://www.atmos-meas-tech.net/6/2403/2013/amt-6-2403-2013.pdf McClear Web service: http://www.soda-pro.com/free-web-services/radiation/mcclear MACC projects: http://www.gmes-atmosphere.eu/
-
HelioClim3v4-MC Monthly Direct Normal Irradiation for the month of May. 2005 in kWh/m2. Copyright 2013 MINES ParisTech / Transvalor Direct component of the irradiation received by a plane normal to sun rays during the month of May. 2005 for the field-of-view of the Meteosat satellite. MINES ParisTech has developed the Heliosat-2 method that converts 15 min Meteosat images into irradiation maps and stores them into the HelioClim3 database. A monthly irradiation value is computed only if at least 25 daily irradiation values are available. The irradiation values of the missing days are computed by taking into account the mean value of the valid days and the length of each missing day. A day is valid if the HelioSat-2 method can be applied on at least one 15 min slot. Gaps in the day are filled by taking into account the available 15 min irradiation values and the length of the day. The other irradiation components (direct, diffuse) received on an horizontal, tilted or normal plane are then computed and provided via the SoDa Service (www.soda-is.com and pro.soda-is.com) since 2003. Such data are used by academics for teaching and research in solar energy, environment, climate and others, and by companies for the sitting of solar plants (PV, CST), their sizing, and the monitoring of their production. Since 2009, the French company Transvalor is in charge of the SoDa Service. Transvalor provides in addition a series of user-tailored services, such as these maps made with MINES ParisTech that combine HelioClim-3 data with an advanced model McClear that estimates the irradiation that should be received for a given site and given instant if the sky were clear, aka clear sky irradiation. Here MC stands for McClear. Transvalor and MINES ParisTech have set up the McClear Clear-Sky Irradiation service that delivers time series of clear sky global, direct, direct normal, and diffuse irradiation for any site in the world, any period of time starting in 2004 up to now, with a time step ranging from 1 min to 1 month. The McClear is an outcome of the MACC and MACC-II EU-funded projects. More Information: Heliosat-2 publication: http://hal.archives-ouvertes.fr/docs/00/36/13/64/PDF/solar_energy04_heliosat2.pdf HelioClim-3: http://www.soda-is.com/eng/helioclim/helioclim3_eng.html McClear publication: http://www.atmos-meas-tech.net/6/2403/2013/amt-6-2403-2013.pdf McClear Web service: http://www.soda-pro.com/free-web-services/radiation/mcclear MACC projects: http://www.gmes-atmosphere.eu/
-
HelioClim3v4-MC Monthly Diffuse Horizontal Irradiation for the month of Dec. 2005 in kWh/m2. Copyright 2013 MINES ParisTech / Transvalor Diffuse irradiation received by a horizontal plane during the month of Dec. 2005 for the field-of-view of the Meteosat satellite. MINES ParisTech has developed the Heliosat-2 method that converts 15 min Meteosat images into irradiation maps and stores them into the HelioClim3 database. A monthly irradiation value is computed only if at least 25 daily irradiation values are available. The irradiation values of the missing days are computed by taking into account the mean value of the valid days and the length of each missing day. A day is valid if the HelioSat-2 method can be applied on at least one 15 min slot. Gaps in the day are filled by taking into account the available 15 min irradiation values and the length of the day. The other irradiation components (direct, diffuse) received on an horizontal, tilted or normal plane are then computed and provided via the SoDa Service (www.soda-is.com and pro.soda-is.com) since 2003. Such data are used by academics for teaching and research in solar energy, environment, climate and others, and by companies for the sitting of solar plants (PV, CST), their sizing, and the monitoring of their production. Since 2009, the French company Transvalor is in charge of the SoDa Service. Transvalor provides in addition a series of user-tailored services, such as these maps made with MINES ParisTech that combine HelioClim-3 data with an advanced model McClear that estimates the irradiation that should be received for a given site and given instant if the sky were clear, aka clear sky irradiation. Here MC stands for McClear. Transvalor and MINES ParisTech have set up the McClear Clear-Sky Irradiation service that delivers time series of clear sky global, direct, direct normal, and diffuse irradiation for any site in the world, any period of time starting in 2004 up to now, with a time step ranging from 1 min to 1 month. The McClear is an outcome of the MACC and MACC-II EU-funded projects. More Information: Heliosat-2 publication: http://hal.archives-ouvertes.fr/docs/00/36/13/64/PDF/solar_energy04_heliosat2.pdf HelioClim-3: http://www.soda-is.com/eng/helioclim/helioclim3_eng.html McClear publication: http://www.atmos-meas-tech.net/6/2403/2013/amt-6-2403-2013.pdf McClear Web service: http://www.soda-pro.com/free-web-services/radiation/mcclear MACC projects: http://www.gmes-atmosphere.eu/
-
HelioClim3v4-MC Monthly Diffuse Horizontal Irradiation for the month of Jul. 2005 in kWh/m2. Copyright 2013 MINES ParisTech / Transvalor Diffuse irradiation received by a horizontal plane during the month of Jul. 2005 for the field-of-view of the Meteosat satellite. MINES ParisTech has developed the Heliosat-2 method that converts 15 min Meteosat images into irradiation maps and stores them into the HelioClim3 database. A monthly irradiation value is computed only if at least 25 daily irradiation values are available. The irradiation values of the missing days are computed by taking into account the mean value of the valid days and the length of each missing day. A day is valid if the HelioSat-2 method can be applied on at least one 15 min slot. Gaps in the day are filled by taking into account the available 15 min irradiation values and the length of the day. The other irradiation components (direct, diffuse) received on an horizontal, tilted or normal plane are then computed and provided via the SoDa Service (www.soda-is.com and pro.soda-is.com) since 2003. Such data are used by academics for teaching and research in solar energy, environment, climate and others, and by companies for the sitting of solar plants (PV, CST), their sizing, and the monitoring of their production. Since 2009, the French company Transvalor is in charge of the SoDa Service. Transvalor provides in addition a series of user-tailored services, such as these maps made with MINES ParisTech that combine HelioClim-3 data with an advanced model McClear that estimates the irradiation that should be received for a given site and given instant if the sky were clear, aka clear sky irradiation. Here MC stands for McClear. Transvalor and MINES ParisTech have set up the McClear Clear-Sky Irradiation service that delivers time series of clear sky global, direct, direct normal, and diffuse irradiation for any site in the world, any period of time starting in 2004 up to now, with a time step ranging from 1 min to 1 month. The McClear is an outcome of the MACC and MACC-II EU-funded projects. More Information: Heliosat-2 publication: http://hal.archives-ouvertes.fr/docs/00/36/13/64/PDF/solar_energy04_heliosat2.pdf HelioClim-3: http://www.soda-is.com/eng/helioclim/helioclim3_eng.html McClear publication: http://www.atmos-meas-tech.net/6/2403/2013/amt-6-2403-2013.pdf McClear Web service: http://www.soda-pro.com/free-web-services/radiation/mcclear MACC projects: http://www.gmes-atmosphere.eu/
Metadata catalogue