Creation year

2005

4706 record(s)
 
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 4706
  • The GeoSure data sets and reports from the British Geological Survey provide information about potential ground movement or subsidence in a helpful and user-friendly format. The reports can help inform planning decisions and indicate causes of subsidence. The methodology is based on BGS DiGMap (Digital Map) and expert knowledge of the behaviour of the formations so defined. This dataset provides an assessment of the potential for a geological deposit to shrink and swell. Many soils contain clay minerals that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage). The rock formations most susceptible to shrink-swell behaviour are found mainly in the south-east of Britain. Clay rocks elsewhere in the country are older and have been hardened by burial deep in the earth and are less able to absorb water. The BGS has carried out detailed geotechnical and mineralogical investigations into rock types known to shrink, and are modelling their properties across the near surface. This research underpins guidance contained in the national GeoSure dataset, and is the basis for our responses to local authorities, companies and members of the public who require specific information on the hazard in their areas. The BGS is undertaking a wide-ranging research programme to investigate this phenomenon by identifying those areas most at risk and developing sustainable management solutions. Complete Great Britain national coverage is available. The storage formats of the data are ESRI and MapInfo but other formats can be supplied.

  • Scottish UK Parliamentary Constituencies (or Westminster Constituencies) define the electoral areas of Scotland used to return members to the Parliament of the United Kingdom in UK general elections. They are different from the Scottish Parliamentary Constituencies, which are used to return members to the Scottish Parliament. There are currently 59 Westminster constituencies in total, each electing one Member of Parliament. The Boundary Commission for Scotland is responsible for recommendations on the definition of constituency boundaries, however, the definitive dataset is delineated by Ordnance Survey for inclusion in their BoundaryLine product.

  • Quaternary profile map of Flanders (Belgium) 1/200.000.

  • Guyadiv is a network of permanent forest plots installed in French Guiana. The site of Petite Montagne Tortues is composed of 7 plots : 5 30x40m-plots and 2 20x20m-plots. A complete inventory has been made in 2005 : 483 trees with dbh>=10cm have been registrated. Respectively to each plot, 67, 70, 79, 49, 22, 57 and 80 species have been identified. The percents of trees identified to the species level are 95,7%, 79,5%, 95,2%, 92,5% 62,9%, 91,9% and 87%. We only have the point coordinates and not the precise demarcation of the sample plots. In order to calculate the bounding box for these plots, we have expanded the point location 500 meters in each direction.

  • The SOERE-ACBB is a set of three platforms involving long-term (> 20 yrs) field experiments initiated in 2005-2009. Long-term studies are carried out on biogeochemical cycles and functional biodiversity (flora and fauna) in agroecosystems as affected by land use, management practices and climate change. The SOERE-ACBB covers three land use and climatic regions in France: temporary grassland, permanent grassland and arable land. The main hypothesis tested is that the evolution of the systems in response to anthropogenic disturbances and land use management is strongly linked to the dynamics of quantitative and qualitative composition of soil organic matter (SOM) and vegetation diversity. SOERE-ACBB is unique in enabling analysis of feedback loops between management practices, biogeochemical cycles and biodiversity by offering opportunities for simultaneous study of interactions between SOM dynamics, microbial communities and vegetation under various management practices of agroecosystems. The platforms are designed to characterize the trajectories of key variables of the systems throughout time as changes occur – elements such as carbon, phosphorus, potassium and nitrogen and the diversity of plants and organisms in the soil – over years or decades. The platform’s instrumentation continuously quantifies a broad range of physical, chemical and biological variables: climate forcing variables, physical conditions in soil, water fluxes and quality, carbon and nitrogen storage in soil, greenhouse gas emissions (GHG), floral, faunal and microbial diversity. The ability to monitor quantitative and qualitative changes in SOM over time will allow scientists to relate the overall evolution to energy balance and resource elements. Although SOERE-ACBB is a national infrastructure, scientists from other countries are welcome and can benefit from the acquired experience and knowledge. SOERE-ACBB has been involved in many international projects such as the Global Research Alliance and the International soil warming experiment network and is still a partner in a number of ongoing projects such as ExpeER, AnimalChange, Ecofinders and Multisward.

  • The SOERE PRO is a network of long-term field experiments dedicated to the quantification of all effects of organic residue (OR) application in agriculture. It has been created in 2011 to evaluate benefits and risks associated to organic residue recycling in agriculture. The SOERE PRO provides data (1) to better evaluate the effects of regular OR application on organic matter dynamic and potential C storage in soils, biogeochemical cycles of nutrients (C, N, P), fate of potentially present chemical and biological contaminants, soil biological activities; (2) simulate the long-term consequences of regular application and integrate them in environmental analysis that will allow to (3) test various alternative scenarios of application. The experimental sites allow measuring the long-term evolution of the agro-system after repeated applications of organic residues derived from urban and agricultural activities (sludge, composts, manures) and undergoing various treatments (none, composting, anaerobic digestion). The SOERE PRO network involved different research institutes and collaborations with concerned professional partners. The SOERE PRO sites are managed to provide field experiments to support research programs (ex. FP7 GENESIS, ADEME Bioindicateurs, ANR Isard, ANR CESA CEMABS, SNOWMAN, PhD works). 3 on-going sites of the SOERE PRO network are involved in ANAEE-France: QualiAgro located in the Paris basin comparing urban composts and manure (started in 1998), EFELE located in Brittany comparing different manures and different treatment processes (started in 2012), Colmar located in north east of France comparing composted and non-composted residues (started in 2000). In addition to those 3 sites involved directly in ANAEE-France, the SOERE PRO network includes also 4 other sites covering larger agro-pedo-climatic contexts with: 1 site located in tropical conditions in La Réunion Island comparing urban OR and farm effluents (started in 2014), 2 historical sites OR where OR spreading has stopped but allowing to study system resiliency and including high contamination levels (La Bouzule and Couhins), 1 site located in Burkina Faso devoted to the study of the OR input mode of various composts and conducted under tropical conditions. The same analyses and measurements are managed on the 3 sites involved in ANAEE-France. The same instrumentations are installed to monitor the hydrodynamic functioning of soil: TDR probes, tensiometers, temperature sensors, lysimeters. Climatic data are monitored on all sites. Greenhouse gas emissions (N2O, CO2) will be continuously measured by gas measurement chambers. The applied organic residues, soils, crops and waters (rains and leached waters) are sampled and analysed similarly (parameters, analytical methods, laboratories). Data management is centralized at the SOERE PRO level with the development of web interfaces (data integration and extraction) and data bases for field experiment data, analytical data of organic wastes applied in France and for traceability information concerning SOERE PRO samples. The information system is developed by the INRA EcoInformatique team devoted to develop and manage the information systems of the INRA long-term observatories (INRA Orléans). Samples of OR, soil and crops are long-term stored under harmonized conditions to allow future analyses and/or future investigations by scientists.

  • The GeoSure data sets and reports from the British Geological Survey provide information about potential ground movement or subsidence in a helpful and user-friendly format. The reports can help inform planning decisions and indicate causes of subsidence. The methodology is based on BGS DiGMap (Digital Map) and expert knowledge of the behaviour of the formations so defined. This dataset provides an assessment of the potential for dissolution within a geological deposit. Ground dissolution occurs when certain types of rock contain layers of material that may dissolve if they get wet. This can cause underground cavities to develop. These cavities reduce support to the ground above and can lead to a collapse of overlying rocks. Dissolution of soluble rocks produces landforms and features collectively known as 'karst'. Britain has four main types of soluble or 'karstic' rocks; limestone, chalk, gypsum and salt, each with a different character and associated potential hazards. Engineering problems associated with these karstic rocks include subsidence, sinkhole formation, uneven rock-head and reduced rock-mass strength. Sinkhole formation and subsidence has the potential to cause damage to buildings and infrastructure. Complete Great Britain national coverage is available. The storage formats of the data are ESRI and MapInfo but other formats can be supplied.

  • The Estrées-Mons platform is dedicated to arable crops. It evaluates the effect of agricultural practices on C and N cycles in the soil-plant system and their interaction. Nitrate leaching, SOM evolution and GHG emissions (CO2, N2O) are monitored according to level of N intensification, crop residues export, soil tillage and legume frequency. The key issue is to understand how the wide variation in C and N inputs affects C and N cycles in more or less intensified systems.

  • The GeoSure data sets and reports from the British Geological Survey provide information about potential ground movement or subsidence in a helpful and user-friendly format. The reports can help inform planning decisions and indicate causes of subsidence. The methodology is based on BGS DiGMap (Digital Map) and expert knowledge of the behaviour of the formations so defined. This dataset provides an assessment of slope instability. Landslide hazard occurs due to particular slope characteristics (such as geology, gradient, sources of water, drainage, man-made constructions) combining to cause the slope to become unstable. Downslope movement of materials, such as a landslide or rockfall may lead to a loss of support and damage to buildings. Complete Great Britain national coverage is available. The storage formats of the data are ESRI and MapInfo but other formats can be supplied.

  • Data identifying landscape areas (shown as polygons) attributed with geological names. The scale of the data is 1:250 000 scale providing a generalised geology. Onshore coverage is provided for all of England, Wales, Scotland and the Isle of Man. Data are supplied as two themes: bedrock and linear features (faults), there is no superficial, mass movement or artificial theme available onshore at this scale. Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. Geological names are based on the lithostratigraphic or lithodemic hierarchy. This means rock bodies are arranged into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition. This assesses visible features such as texture, structure, mineralogy. Data identifying linear features (shown as polylines) represent geological faults at the ground or bedrock surface (beneath superficial deposits). Geological faults occur where a body of bedrock has been fractured and displaced by large scale processes affecting the earth's crust (tectonic forces). The faults theme defines geological faults (shown as polylines) at the ground or bedrock surface (beneath superficial deposits). The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.