Kelp forest distribution within the Bay of Morlaix (France)
Data represents presence-absence prediction of kelp forest. Biological ground truth data were integrated with high resolution environmental datasets to develop statistical model that accurately predict the structure of Laminaria forests within the Bay of Morlaix. As a direct management output, high-resolution map (25 m2 grid) was produced.
|
|
Citation proposal
Gorman D. Gorman D. (CSIRO CSIRO ) (2012) . Kelp forest distribution within the Bay of Morlaix (France). IFREMER IFREMER https://services.mspdata.eu:/geonetwork/srv/api/records/12b209ad-b6ac-474a-9f05-ad0d8cb9c6ad |
Simple
- Date ( Publication )
- 2012-01-01T00:00:00
- Identifier
-
IFR_MORLAIX_KELP_PRESENCE_ABSENCE
- Identifier
-
DOI:10.12770/12b209ad-b6ac-474a-9f05-ad0d8cb9c6ad
- Credit
-
Gorman D., Bajjouk T., Populus J., Vasquez M., Ehrhold A. (2013). Modeling kelp forest distribution and biomass along temperate rocky coastlines. Marine Biology, 160(2), 309-325.
Author
Publisher
- GEMET - INSPIRE themes, version 1.0 GEMET - INSPIRE themes, version 1.0 ( Theme )
-
-
Habitats and biotopes
-
- Thèmes Sextant Thèmes Sextant ( Theme )
-
-
/Biological Environment/Habitats
-
- Ocean Hackathon - Ville Ocean Hackathon - Ville ( Place )
-
-
Brest
-
- Cadre Réglementaire - SIMM Cadre Réglementaire - SIMM ( Theme )
-
- Sous-regions marines Sous-regions marines ( Place )
-
-
/Metropolitan France/Celtic Seas
-
- Thématiques - SIMM Thématiques - SIMM ( Theme )
-
-
/Environmental Status/Habitats
-
- Type de jeux de donnée ODATIS Type de jeux de donnée ODATIS ( Theme )
-
-
/Processed data/Model outputs
-
- Specific usage
- Use limitation
-
Creative Commons license to apply : Attribution + Non Commercial + No Derivs (BY-NC-ND) : http://creativecommons.org/licenses/?lang=en
- Access constraints
- Other restrictions
- Use constraints
- Copyright
- Other constraints
-
unrestricted
- Spatial representation type
- Grid
- Distance
- 25 meter
- Metadata language
- English
- Character set
- UTF8
- Topic category
-
- Environment
- Reference system identifier
-
EPSG
/RGF_1993_Lambert_93 (EPSG:102110)
/
- Number of dimensions
- 2
- Dimension name
- Column
- Dimension size
- 5462
- Dimension name
- Row
- Dimension size
- 5674
- Cell geometry
- Area
- Distribution format
-
- ()
- OnLine resource
-
IFR_MORLAIX_KELP_PRESENCE_ABSENCE
Kelp forest distribution : Probability of presence
- Protocol
-
COPYFILE
- Name
-
IFR_MORLAIX_KELP_PRESENCE_ABSENCE
- Description
-
Kelp forest distribution : Probability of presence
- OnLine resource
-
IFR_MORLAIX_KELP_PRESENCE_ABSENCE_STD
Kelp forest distribution : Probability of presence - Standard Deviation
- Protocol
-
COPYFILE
- Name
-
IFR_MORLAIX_KELP_PRESENCE_ABSENCE_STD
- Description
-
Kelp forest distribution : Probability of presence - Standard Deviation
- OnLine resource
-
DOI du jeu de donnée
DOI du jeu de donnée
- Hierarchy level
- Dataset
Conformance result
- Date ( Publication )
- 2010-12-08
- Explanation
-
See the referenced specification
- Statement
-
A habitat distribution modelling approach was used to model the spatial distribution of kelp forests within the Bay of Morlaix (France).
Lineage:
Data represents presence-absence prediction of kelp forest. Biological ground truth data were integrated with high resolution environmental datasets to develop statistical model that accurately predict the structure of Laminaria forests within the Bay of Morlaix. As a direct management output, high-resolution map (25 m2 grid) was produced.
Type of occurrence data used:
Forest occurrence (presence or absence),representative across the full range of environmental gradients, was sampled through a combination of underwater video surveys and direct diver observations.
Environmental covariates/explanatory variables:
The probability of kelp forest occurrence and its standard deviation was predicted using an additive multiple regression of water depth, light availability, significant wave height and sediment proximity.
Algorithm/modelling approach:
Kelp biological response (presence/absence) was estimated using Generalized Additive Models (GAM)
Metadata
- File identifier
- 12b209ad-b6ac-474a-9f05-ad0d8cb9c6ad XML
- Metadata language
- English
- Character set
- UTF8
- Hierarchy level
- Dataset
- Date stamp
- 2021-11-05T16:19:25
- Metadata standard name
-
ISO 19115:2003/19139 - SEXTANT
- Metadata standard version
-
1.0
Point of contact
Centre Bretagne - ZI de la Pointe du Diable - CS 10070 - 29280 Plouzané
Brest
France
Metadata catalogue